Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tuncay Karakurt, ${ }^{\text {a }}$ Muharrem

 Dincer, ${ }^{\text {a* }}$ Bahittin Kahveci, ${ }^{\text {b }}$ Asu Usta, ${ }^{\text {c }}$ Erbil Ağar ${ }^{\text {d }}$ and Selami Sașmaz ${ }^{\text {b }}$${ }^{\text {a }}$ Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139-Samsun, Turkey, ${ }^{\text {b }}$ Karadeniz Teknik University, Rize Arts and Sciences Faculty, Department of Chemistry, Rize, Turkey, ${ }^{\text {c }}$ Karadeniz Teknik University, Arts and Sciences Faculty, Department of Chemistry, Rize, Turkey, and dondokuz Mayıs University, Arts and Sciences Faculty, Department of Chemistry, 55139-Samsun, Turkey

Correspondence e-mail: mdincer@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.050$
$w R$ factor $=0.075$
Data-to-parameter ratio $=14.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

3-(p-Chlorobenzyl)-4-(p-fluorobenzylidene-amino)-4,5-dihydro-1H-1,2,4-triazol-5-one

The title molecule, $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClFN}_{4} \mathrm{O}$, contains three planar rings. The molecules are linked by an intermolecular hydrogen bond. The p-chlorophenyl and p-fluorophenyl rings form dihedral angles of $61.2(4)$ and $12.38(10)^{\circ}$, respectively, with the triazole ring.

Comment

Triazole rings are typically planar 6π-electron partially aromatic systems, possessing an extensive chemistry (Kroger et al., 1965; Temple, 1981). 1,2,4-Triazole and its derivatives are starting materials for the synthesis of many heterocycles (Milcent \& Redeuilh, 1979; Milcent \& Vicart, 1983). Compounds containing these systems have been structurally characterized as part of a study of Schiff bases of amine- and thione-substituted triazoles and their metal complexes (McCarrick et al., 1999; Clark et al., 1999). In addition to its extensive chemical significance, the $1,2,4$-triazole nucleus is also found to be associated with diverse pharmacological properties, such as analgesic, antiasthmatic, diuretic, antiinflammatory, fungicidal, bactericidal and pesticidal activities (Mohamed et al., 1993; Grammaticakis \& Champetier, 1970). Therefore, the crystal-structure determination of the title compound, (I), was carried out.

The title molecule (Fig. 1) contains three rings, a triazole ring (ring A; atoms $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 8 / \mathrm{N} 3 / \mathrm{C} 9$) and two benzene rings [rings $B(\mathrm{C} 1-\mathrm{C} 6)$ and $C(\mathrm{C} 11-\mathrm{C} 16)$]. The bond lengths and angles in (I) are found to be normal (Table 1). In the structure, the benzylidenamino group is almost coplanar with the triazole ring: $\mathrm{O} 1-\mathrm{C} 9-\mathrm{N} 3-\mathrm{N} 4=-1.4(5)^{\circ}, \mathrm{N} 3-\mathrm{N} 4-\mathrm{C} 10-\mathrm{C} 11$ $=-178.1(3)^{\circ}$ and $\mathrm{C} 8-\mathrm{N} 3-\mathrm{N} 4-\mathrm{C} 10=-177.1(3)^{\circ}$. The dihedral angle between the triazole ring and benzene ring C is $12.38(10)^{\circ}$. The benzene ring B forms a dihedral angle of $61.2(4)^{\circ}$ with ring C. A view of the molecular packing is shown in Fig. 2.

Experimental

The corresponding amino compound, 3-p-chlorobenzyl-4-amino-4,5-dihydro-1,2,4-triazol-5-one (0.01 mol), was heated in an oil bath with p-fluorobenzaldehyde $(0.01 \mathrm{~mol}, 1.05 \mathrm{ml})$ at $443-448 \mathrm{~K}$ for 1 h and

Received 9 January 2004 Accepted 22 March 2004 Online 27 March 2004

Figure 1
An ORTEP-3 (Farrugia, 1997) plot of (I), showing the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
then allowed to cool. The solid product was recrystallized from ethanol to give the desired compound (m.p. 487-488 K). Elemental analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClFN}_{4} \mathrm{O}$: C 58.10 , H 3.66, N 16.94%; found: C 58.23 , H 3.93, N 16.80\%. Characteristic ${ }^{1} \mathrm{H}$ NMR peaks $\left(\mathrm{COCl}_{3}\right): 4.06\left(s, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 9.78(s, 1 \mathrm{H}, \mathrm{NH}), 7.10(m, 6 \mathrm{H}, \mathrm{ArH})$, $7.74(m, 2 \mathrm{H}, \mathrm{ArH})$.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClFN}_{4} \mathrm{O}$
$M_{r}=330.75$
Monoclinic, $P 2_{1} / c$
$a=15.219(2) \AA$
$b=4.7796(4) \AA$
$c=21.567(3) \AA$
$\beta=103.900(12)^{\circ}$
$V=1522.9(3) \AA^{3}$
$Z=4$
$D_{x}=1.443 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3765 reflections
$\theta=1.4-21.8^{\circ}$
$\mu=0.27 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colourless
$0.80 \times 0.30 \times 0.03 \mathrm{~mm}$

Data collection

Stoe IPDS-2 diffractometer ω scans

2839 independent reflections 959 reflections with $I>2 \sigma(I)$
Absorption correction: by
integration (X-RED32; Stoe
\& Cie, 2002)
$T_{\text {min }}=0.907, T_{\text {max }}=0.992$
17224 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.075$
$S=0.84$
2839 reflections
196 parameters
$R_{\text {int }}=0.146$
$\theta_{\text {max }}=25.5^{\circ}$
$h=-18 \rightarrow 18$
$k=-5 \rightarrow 5$
$l=-26 \rightarrow 26$

$$
\begin{aligned}
& \text { H-atom parameters constrained } \\
& \left.w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)\right)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.40 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{Cl} 1-\mathrm{C} 3$	$1.748(4)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.377(4)$
$\mathrm{F} 1-\mathrm{C} 14$	$1.362(5)$	$\mathrm{N} 3-\mathrm{C} 8$	$1.381(4)$
$\mathrm{O} 1-\mathrm{C} 9$	$1.249(4)$	$\mathrm{N} 3-\mathrm{C} 9$	$1.391(4)$
N1-C9	$1.335(4)$	$\mathrm{N} 4-\mathrm{C} 10$	$1.265(4)$
N1-N2	$1.389(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.518(5)$
N2-C8	$1.282(4)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.460(5)$
N4-N3-C8	$121.8(3)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 7$	$125.0(4)$
N4-N3-C9	$131.0(3)$	$\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 7$	$122.8(4)$
C10-N4-N3	$118.9(3)$	$\mathrm{O} 1-\mathrm{C} 9-\mathrm{N} 1$	$129.4(4)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$112.5(3)$	$\mathrm{O} 1-\mathrm{C} 9-\mathrm{N} 3$	$127.4(4)$

Figure 2
A view, down the b axis, of the packing. Hydrogen bonds are shown as dashed lines.

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	0.86	1.96	$2.795(4)$	164

Symmetry code: (i) $-x,-y, 2-z$.
H atoms were positioned geometrically and treated using a riding model, with an $\mathrm{N}-\mathrm{H}$ distance of $0.86 \AA$ for atom N 1 and $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ for the phenyl atoms and atom C10, and $0.97 \AA$ for atom C7. The displacement parameters of the H atoms were included as $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom). The reflections were very weak due to the thinness of the crystal. No further precaution was available to increase the intensities.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997) and PLATON (Spek, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Clark, R. W., Squattrito, P. J., Sen, A. K. \& Dubey, S. N.(1999). Inorg Chim. Acta, 293, 61.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Grammaticakis, M. P. \& Champetier, M. G. (1970). C. R. Acad. Sci. Paris, 271, 940.

Kroger, C. F., Hummel, L., Mutscher, M. \& Bayer, H. (1965). Chem. Ber. 98, 3025.

McCarrick, R. M., Squattrito, P. J., Singh, R. N., Honda, R. N. \& Dubey, S. N. (1999). Acta Cryst. C55, 2111-2114.

Milcent, R. \& Redeuilh, C. J. (1979). Heterocycl. Chem. 16, 403.
Milcent, R. \& Vicart, P. (1983). Eur. J. Med. Chem-Chim. Ther. 18, 215.
Mohamed, E. A., El-Deen, I. M., İsmail, M. M. \& Mohamed, S. M. (1993). Indian J. Chem. Sect. B, 32, 933-937.
Sheldrick, G. M. (1990). SHELXS86. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). PLATON. University of Utrecht, The Netherlands.
Stoe \& Cie (2002). X - A REA and X-RED32. Stoe \& Cie, Darmstadt, Germany. Temple, C. (1981). 1,2,4-Triazoles, in The Chemistry of the Heterocyclic Compounds, Vol. 34. New York: Wiley Interscience.

